Mechanical advantage of the canine diaphragm.

نویسندگان

  • T A Wilson
  • A M Boriek
  • J R Rodarte
چکیده

The mechanical advantage (mu) of a respiratory muscle is defined as the respiratory pressure generated per unit muscle mass and per unit active stress. The value of mu can be obtained by measuring the change in the length of the muscle during inflation of the passive lung and chest wall. We report values of mu for the muscles of the canine diaphragm that were obtained by measuring the lengths of the muscles during a passive quasistatic vital capacity maneuver. Radiopaque markers were attached along six muscle bundles of the costal and two muscle bundles of the crural left hemidiaphragms of four bred-for-research beagle dogs. The three-dimensional locations of the markers were obtained from biplane video-fluoroscopic images taken at four volumes during a passive relaxation maneuver from total lung capacity to functional residual capacity in the prone and supine postures. Muscle lengths were determined as a function of lung volume, and from these data, values of mu were obtained. Values of mu are fairly uniform around the ventral midcostal and crural diaphragm but significantly lower at the dorsal end of the costal diaphragm. The average values of mu are -0.35 +/- 0.18 and -0.27 +/- 0.16 cmH2O. g-1. kg-1. cm-2 in the prone and supine dog, respectively. These values are 1. 5-2 times larger than the largest values of mu of the intercostal muscles in the supine dog. From these data we estimate that during spontaneous breathing the diaphragm contributes approximately 40% of inspiratory pressure in the prone posture and approximately 30% in the supine posture. Passive shortening, and hence mu, in the upper one-third of inspiratory capacity is less than one-half of that at lower lung volume. The lower mu is attributed primarily to a lower abdominal compliance at high lung volume.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Corrugations on Mechanical Sensitivity of Diaphragm for MEMS Capacitive Microphone

In this paper the effect of corrugated diaphragm on performance of MEMS microphone is described. The corrugated diaphragm is modeled in order to improve the sensitivity of micromachined silicon acoustic sensor. Analytical analyzes have been carried out to derive mathematic expressions for the mechanical sensitivity and displacement of corrugated diaphragm with residual stress. It is shown that ...

متن کامل

Simulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm

This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...

متن کامل

Hydroelastic Vibration of a Circular Diaphragm in the Fluid Chamber of a Reciprocating Micro Pump

Reciprocating diaphragm micro-pumps are the most common type among indirectly–driven micro-pumps. They operate by reciprocating the diaphragm with associated check valves. This paper addresses the Hydroelastic vibration of circular elastic diaphragm interacting with the incompressible and inviscid liquid inside the cylindrical chamber with a central discharge opening. Taking into account axisym...

متن کامل

Modelling of Resonance Frequency of MEMS Corrugated Diaphragm for Capacitive Acoustic Sensors (TECHNICAL NOTE)

In this paper, a new model for resonance frequency of clamped circular corrugated diaphragm has been presented. First, an analytical analyzes has been carried out to derive mathematic expressions for mechanical sensitivity of diaphragm with residual stress. Next by using Rayleigh's method we present mathematical model to calculate the resonance frequency of corrugated diaphragm and investigate ...

متن کامل

Hyperinflation and respiratory muscle interaction.

Hyperinflation clearly affects respiratory muscle interaction. It commonly increases the rib cage contribution to chest wall motion, whilst it reduces the abdominal contribution. This change is thought to result from the fact that hyperinflation severely reduces the mechanical advantage of the diaphragm, whilst it affects the mechanical advantage of the neck and rib cage muscles to a lesser ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 85 6  شماره 

صفحات  -

تاریخ انتشار 1998